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Abstract
In thework reported herein, we investigate the practicality of a recently introduced variant of a general
phase-sensitivemethod in small-angle neutron scattering that attempts to address the loss of phase-
information aswell as the orientational averaging simultaneously—through the use of reference
structures in conjunctionwithfinite element analysis. In particular, one possible physical realization
of this approach is to employ polarized beams together with amagnetic reference connected to the
sample object.We report on afirst such practical implementation by successfully recovering the
structure of a core–shell nanoparticle system.

1. Introduction

In typical diffraction experiments information about the phase of the scatteredwave is lost because themeasured
quantity is the squaredmodulus of the structure factor and not the structure factor itself. The loss of phase
information leads to ambiguity in structure determination fromdiffraction data. This so-called phase problem
is arguably the biggest problem in diffraction experiments.Methods such as isomorphic substitution of atoms in
crystals, resonant x-ray scattering at synchrotrons, and hydrogen-deuterium substitution for neutrons have
been developed in addition to the techniques introduced byHauptmann andKarle for x-ray crystallography
[1, 2] to overcome the phase-problem. Some of thesemethods are reviewed in awork by Taylor [3]. These
methods, however, are in general only suitable for certain types of samples (e.g., crystals, non-light elements), or
the sample has to be changed to perform the experiment, or both.

In polarized specular neutron reflectivity amethod has been developed to obtain both amplitude and phase
of thewave reflected froma thin film structure using amagnetic reference layer and a polarized neutron beam,
enabling an unambiguous determination of the scattering length density (SLD) profile normal to thefilm surface
[4–7]. In themethod developed for specular neutron reflectometry, it was necessary to formulate afirst-
principlesmethod in terms of a solution of the Schroedinger wave equation since the reflectivity at low values of
wavevector transferQ in the neighborhood of the critical angle for total external reflection can be sufficiently
large that the typically applied Born approximation is no longer valid.

In the interest of further developing and possibly improving upon the basic concept of employing reference
structures to extract phase information, a variation of such a techniquewas introduced [8] for dilute-solution
small-angle neutron scattering (SANS) inwhich: (1) a reference object is attached externally to the sample object
of incompletely known structure in a specific orientation and at a particular position; (2) two independent
scattering experiments are then performed, one for an ensemble of composite objects with reference part ‘A’ and
the otherwith reference part ‘B’—the sample part of each object being the same; and (3) the data is analyzed in
terms of the unknown part of the sample structure rendered into finite elements of arbitrarily-sized volume. As
was shown in [8], the incrementally differentmethod for phase determination introduced therein recovers, in
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principle, the sought after phase information and, in addition, simultaneously retrieves information lost to
orientational averaging of the sample objects because of their randomorientationswhen suspended in a liquid
environment. The latter orientational information can be extracted because there exists a fixed relationship
between sample and reference in the specific type of configuration employed in thismethod.

In essence, the phase-sensitivemethod that is investigated experimentally here differs in one key aspect from
amore conventional isomorphic substitution (in crystallography) or contrast variation (in small-angle
scattering). Instead of isomorphically replacing atom ‘A’ at a known locationwithin a unit cell with an atomof
type ‘B’—or effectively changing the contrast or SLD of one portion of a system containing a ferromagnetic
component through the use of polarized beams (see e.g., [9])—and performing a conventional analysis of the
two composite system (unknown part plus reference segment) scattering data sets, the fundamentalmanner in
which the composite systemdata are analyzed is reformulated as originally introduced in [8]. A synopsis of that
reformulated analysis is given below as amore quantitative description of the basic idea.

Imagine, for simplicity, the two-dimensional composite structure depicted infigure 1 inwhich the
‘unknown’ part of the structure is rendered in finite element form, the constant SLD values of each element to be
determined through an analysis of two composite small-angle scattering data sets each corresponding to the
commonunknown part of interest plus one of two known reference parts. Then, following the original
description in [8], we assume a collection of identical such objects, randomly oriented, in the dilute solution
limit (negligible inter-particle correlations). The structure factor for any one of the identical objects in the
ensemble, averaged over all possible angular orientations, is proportional to a differential scattering cross
section.Note that we use the term ‘structure factor’ for the structure of an object as it is conventionally done in
general scattering theory and not the term ‘form factor’ usually used in the small-angle scattering community.
For the purposes of this discussion, we can neglect sample volume normalization factors and set the SLDof the
solution to be zero. Prior to orientational averaging, the structure factor, FC, as definedwithin the Born
approximation, for a single composite two-dimensional object is given by

r= +∬( ) ( ) [ ( )] ( )F x y i Q x Q y dxdyQ , exp , 1

yx

x yC

where ρ(x, y) is the SLD to be determined. The integration is over the entire volume of the object (both unknown
and reference parts) and thewavevector transfer Q and the position vector r are expressed in the object
coordinate system (x, y).We canwrite the composite structure factor FC as the sumof two parts, one for the
unknownpart of the object and the other for the reference piece (this corresponds to the sumof two integrals,
each performed over the respective partial volume):

= +( ) ( ) ( ) ( )F F FQ Q Q , 2C R S

where the subscripts ‘R’ and ‘S’ denote reference and unknown ‘sample of interest’ parts of the composite object.
In any scattering experiment, a scattered intensity ismeasuredwhich is proportional to the complex square of

Figure 1.Two-dimensional composite structure depicted inwhich the unknownpart of the structure is rendered in finite element
form, each element having a constant SLD value. The reference part can be of any SLDdistribution that satisfies the requisite
requirements relating to symmetry and relative size (for a particular level of sensitivity) so long that it is completely known. In the
example calculations in equations (9)–(16) only thefirst four squares are used but in general the sample is decomposed into L byM
squares.
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the structure factor, which for a symmetric component ( )F QR is given by

= + +∣ ∣ ∣ ∣ ∣ ∣ ( )F F F F F2 Re Re , 3C
2

R
2

S
2

R S

since FR is real for a symmetric reference. Because of the randomorientations of the objects in dilute solution,
the expression in equation (3)must be averaged over the entire solid angle. Thus, denoting this orientational
average by ‘áñ’, we need

á ñ = á ñ + á ñ + á ñ∣ ∣ ∣ ∣ ∣ ∣ ( )F F F F F2 Re Re . 4C
2

R
2

S
2

R S

Now suppose that, in principle at least, the reference part of the composite object could be replacedwith a
piece of identical size and shape butwith a different uniform SLD (one possible way is to use a ferromagnetic
reference part in conjunctionwith a polarized beam, as alreadymentioned). Two independent scattering
experiments could then be performed, one for an ensemble of composite objects with reference part ‘A’ and the
otherwith reference part ‘B’—the sample part of each object being the same (FR for either A or B could also be
zero). The difference between the two data sets of scattered intensities thus collected is proportional to the
difference in the corresponding orientationally-averaged square of the composite structure factors. Defining this
difference function to beD(Q), the following relation can bewritten using equation (4):

º - = - + -( ) ⟨∣ ∣ ⟩ ⟨∣ ∣ ⟩ ⟨∣ ∣ ⟩ ⟨∣ ∣ ⟩ ⟨ ⟩ ⟨ ⟩ ( )D Q F F F F F F F F2 Re Re 2 Re Re , 5CA
2

CB
2

RA
2

RB
2

RA S RB S

where the subscripts ‘RA’ and ‘RB’ refer to the two different reference parts successively attached to the common
sample part of the composite scattering object. Since the composite system scattered intensities can bemeasured
and the reference quantities á ñ∣ ∣FRA

2 and á ñ∣ ∣FRA
2 can be computed, then the quantity

= á ñ - á ñ( ) ( )U Q F F F FRe Re Re Re 6RA S RB S

can be directly solved for. Equation (6) is an implicit equation for the desired ReFS that is embeddedwithin the
orientational average as a product with the real part of the knownquantities ReFRB andReFRA. In the special case
where ReFS is isotropic, it can be taken out of the orientational average and directly solved for. For the general
case, however, it is problematic to extract ReFS from the average inwhich it is embedded. Conventionally, in
small-angle scattering the quantity F is defined to be the ‘form’ factor instead of the ‘structure’ factor used in
crystallography and as is adopted here.

In SAS, the rotationally averaged square of F is typically analyzed in terms of a radius of gyration.However,
ideally, ReFS itself is not whatwe are ultimately after but, rather, the function r ( )rs ofwhich FS is the Fourier
transform.With the aid of a piece-wise continuous representation of r ( )rs over a suitablemesh of cells, a set of
discrete element values defining r ( )rs can be extracted, in principle, from the RHS of equation (6) through an
algebraic rearrangement of terms and subsequent solution of a set of linear, simultaneous equations. This is the
essential difference in the approach, as originally introduced in [8], that we are taking in the analysis of the SANS
data and are illustrating herewith the two-dimensional example represented infigure 1. In this case, the
structure factor for the rectangular solid reference part of the object, FR, centered on the composite object
coordinate system, is given by

r r= + = =∬ [ ( )] ( ) ( ) ( ) ( )/F exp i Q x Q y dxdy Q Q Q D Q D F4 sin sin Re 7

yx

x y x y x x y yR R R R

where the integration limits are from−Dx to+Dx and similarly in the y-direction. In the above expression, the
dimensions of the rectangular reference are 2Dx and 2Dy as indicated in figure 1. (The uniform SLDof the
reference, ρR, has units of inverse length squared.)

The structure factor for the sample part of the object has amore complicated form, onewhich can describe
an arbitrary shape and SLDdistribution, and is given by (where the integration limits are now fromDx to
Dx+Ld and analogously in the y−direction):

r= ∬ ( ) ( ) ( ) ( )F x y iQ x iQ y dxdy, exp exp . 8

yx

s x yS

Explicit evaluation of the above expression for the 4-element squaremodel offigure 1 gives

ò ò ò
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r r
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Making explicit use of the finite element rendering of the sample part of the object, the equation immediately
above can be rewritten as

ò ò ò ò

ò ò ò ò

r r

r r

= +

+ +

+ + +
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( )
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where the ρij denote the constant values of SLDwithin the specific (i, j)finite element square. Then the real part
of FS can bewritten, after performing the indicated integrations, as

r r
r r

=
´ + + + + + + + +
+ + + + + + + +
+ + +

[ ( )] ( ) ( )
{ [ ( ) ( )] [ ( ) ( )]

[ ( ) ( )] [ ( )
( )]}

( )

/ / /

/ / / /

/ / /

/

F Q Q Q d Q d

Q D d Q D d Q D d d Q D d

Q D d Q D d d Q D d d

Q D d d

Re 4 sin 2 sin 2

cos 2 2 cos 2 2

cos 2 2 cos 2

2 .

11

x y x y

x x y y x x y y

x x y y x x

y y

S

11 21

12 22

Equation (6) can bewritten explicitly in terms of the angular average of all orientations θ of the composite
object in two dimensions as

òp
q= -

p
( ) ( ) ( )U Q F F F d

1

2
Re Re Re . 12

0

2

RA RB S

Substituting the expressions for ReFRA, ReFRB, andReFS from equations (7) and (11), respectively, we obtain

ò ò ò òr q q r q q r q q r q q= + + +
p p p p

( ) ( ) ( ) ( ) ( ) ( )U Q W d W d W d W d ,  1311
0

2

11 21
0

2

21 12
0

2

12 22
0

2

22

where the quantititesWij are functions of the angle θ only. For instance, the explicit formofW11(θ) is

q p r r
p

= -
´ + + +

( ) [ ( )][ ( ) ( )] ( ) ( )
[ ( )] ( ) ( ) [ ( ) ( )] ( )
/ /

/ / / / /

W Q Q Q D Q D

Q Q Q d Q d Q D d Q D d

1 2 4 sin sin

4 sin 2 sin 2 cos 2 2 . 14

x y x x y y

x y x y x x y y

11 RA RB

The average over all composite orientations relative to the direction of an incident neutronwavevector is
equivalent to an average over all directions of wavevector transferQ so that substituting q= ( )Q Q cosx and

q= ( )Q Q siny allows the coefficients of the SLD values of the elemental squares of the unknown part of the
object to be directly computed. Defining the coefficients of the ρij as

ò q q
p

( ) ( )C W d . 15ij ij
0

2

With L andM elemental squares along the x- and y−axis respectively (see figure 1), wefinally arrive at a systemof
linear equations for LMunknowns ρij describing the finite element representation of the SLDdistribution of the
unknownpart of the composite object—with coefficients which can be calculated and values of theU(Q)which
can be determined from two independent scatteringmeasurements

r r r r
r r r r
r r r r
r r r r

= + + +
= + + +
= + + +
= + + +

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

U Q C Q C Q C Q C Q

U Q C Q C Q C Q C Q

U Q C Q C Q C Q C Q

U Q C Q C Q C Q C Q . 16

1 11 11 1 21 21 1 12 12 1 22 22 1

2 11 11 2 21 21 2 12 12 2 22 22 2

3 11 11 3 21 21 2 12 12 3 22 22 3

4 11 11 4 21 21 2 12 12 4 22 22 4

As shown in detail in [8], the 2D solution outlined above to illustrate the basic concept of this particular
phase-sensitivemethod can be generalized to three dimensions and that a variety of different reference
structures can be employed, including, for example, ferromagneticmaterials in conjunctionwith polarized
beams. In themain body of this paperwe present the first experimental realization of this particular phase-
sensitive small-angle neutron scattering (PS-SANS)method on a simple test system consisting ofmagnetic iron
oxide particles (reference)with an unknownpolymer shell (sample).

2. An initial application of the generalmethod to a simpler spherically symmetric system

Our test system consists of amagnetic iron oxide (Fe3O4) particle core and a polymer shell of unknown
composition and thickness. Themagnetic core, with known radiusRMand SLD ρM, serves as the reference for
PS-SANS and the sample with an SLDdistribution to be determined is the nuclear scattering part of the core and
the polymer shell. The theoretical basis of PS-SANS is described in detail inMajkrzak et al [8] and illustrated in
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the 2D example above. Herewewill employ the same formalismbut with the simplifications that arise because of
the spherical symmetry of our system.

Assuming that the system is in the dilute solution limit the structure factor of one compound particle
(sample+ reference) is given by equation (2). In a diffraction experiment, the intensity of the scattering from the
compound object will be proportional to ∣ ∣FC

2. Because of the spherical symmetry of sample and references no
orientational averaging is needed, and both FS and FR are real. The difference between the twomeasurements
will then be

µ - + -( ) ∣ ∣ ∣ ∣ ( ) ( )D Q F F F F F F2 , 17RA
2

RB
2

RA S RB S

where the subscripts A andB refer to the twomeasurements with different references. If the reference is a ferro-
or ferrimagnetic particlemagnetized along somedirection and twomeasurements are performedwith neutron
polarization parallel and antiparallel to themagnetization respectively, then the same sample-reference system
can be used for the twomeasurements.

In our case the reference is a purelymagnetic scatterer (the nuclear scattering of the particle core is
considered part of the sample) and FRA and FRB differ only in the sign of the (magnetic) SLD, so
FRA=−FRB≡FR and consequently

= =( ) ( ) ( )D Q F F U Q4 2 . 18R S

The structure factor of the reference can be calculated and in our case it will be the familiar structure factor of
a sphere with radius r=RM. The structure factor for a spherical particle with radius r is

p=( )
( )

( )F Qr r
j Qr

Qr
4 , 19Sph

3 1

where j1 is the spherical Bessel function of thefirst kind.
The unknown sample structure can be described by decomposing the continuous SLDdistribution into a

finite number of elements. In the case of an asymmetric sample a regular grid of cubic elements of equal volume
would be an obvious choice. However, because of the spherical symmetry of our system the SLDonly varies in
the radial direction and it is advantageous to describe the structure using afinite element decomposition (FED)
that reflects this symmetry. The FEDwewill use here is a homogeneous sphere with radiusR1 and a number of
concentric spherical shells of constant SLD as depicted infigure 2. The individual shells need not have the same
thickness (or volume) and furthermore, themagnetic and nuclear core does not need to have the same size
( ¹R R1 M in general). For an FED consisting of a spherical core andN−1 shells, themeasured nuclear-
magnetic cross term can be described as

år r=
F

=

( ) ( ) ( ) ( )U Q
V

F QR F Q
2

, 20
j

N

j j
tot

M sph M
1

whereΦ is the volume fraction of core–shell particles in the solvent andVtot is the total FED volume ( pR4 3N
3 ).

For the j’th element of the FED ρj is the SLD and Fj(Q) is the structure factor, i.e., the first term, corresponding to
the core is simply

= ( ) ( )F F QR 21Q,1 sph 1

Figure 2. Finite element decomposition: the sample structure, which consists of an iron oxide core and a polymer shell, is described by
the SLD in a spherical corewith radiusR1 andN−1 concentric shells of varying thickness.RM is the radius of themagnetic reference.
The red concentric circles in thefigure represent the FED. The sample is generally unknown and the FEDdimensions do not
necessarily correspond to the sample dimensions. The relative sizes of features in the schematic drawing do not represent actual
dimensions of the sample or the FEDused in the inversion. The area in the dashed square on the left part of thefigure is enlarged in the
right part of thefigure.
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and the remaining coefficients corresponding to the shells are

= - -( ) ( ) ( )F F QR F QR jfor 2, 22Q j j j, sph sph 1

whereRj is the outer radius of shell number j−1.
IfU(Q) ismeasured inNQQ-points, equation (20) is a linear systemofNQ equations inN unknowns that can

conveniently be expressed as amatrix equation

r

r
=


  




⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( )

( ) ( )

( ) ( )
( )

U Q

U Q

C Q C Q

C Q C Q
. 23

N

N

N N N N

1 1 1 1

1

1

Q Q Q

Equation (23) can be solved for the unknown ρjs using numericalmethods. Herewe use the pinv function in
MATLAB7which uses a truncated singular value decomposition (SVD) to calculate a pseudoinverse of the
coefficientmatrix. An advantage of thismethod is that a parameter tol can be chosen so that all singular values
smaller than tol are treated as zero. Choosing a suitable tol stabilizes the results because it effectively suppresses
experimental noise as well as round-off errors and other numerical artifacts. For comparison, results usingQR-
decomposition (throughMATLABʼs⧹ operator) are also briefly discussed.

2.1. Resolution smearing
When inverting experimental data it is necessary to take the finiteQ—resolution of the instrument into account.
This is done by smearing each of theCj coefficients of equation (23)with the resolution functionR(Q′,Q)

ò= ¢ ¢
¥

( ) ( ) ( ) ( )C Q R Q Q C Q dQ, . 24j j,smeared
0

The resolution function is well approximated by a normalizedGaussianwith aσ that can be calculated for each
Q−point [10, 11]. Size polydispersity of the reference can be treated in exactly the sameway as the instrumental
resolution, butwith the resolution function replaced by the polydispersity function [12].

3. Sample characterization

The PrecisionMRX® core–shell particles for PS-SANSwere produced by Imagion Biosystems for use in
magnetic relaxometry, an experimental technique for the diagnosis of cancer [13]. The particles consist of Fe3O4

cores coatedwith amonolayer of oleic acid, amonolayer of amphiphilic polymer and a layer of polyethylene
glycol. The cores are producedwith a diameter of 25 nmand aGaussian size distributionwith a polydispersity
smaller than 10% [14]. The uniformity in size and shape of the cores is confirmed by transmission electron
microscopy as seen in the image in figure 3.High-resolution transmission electronmicroscopy and powder
x-ray diffraction confirm that the cores consist of Fe3O4with no indications of other phases [14].Magnetometry
data shows that themagnetization of the cores is almost fully saturated at an appliedmagnetic field of 100mT
and reaches a saturationmagnetization of about 70Am2/kg Fe3O4 [13–15] corresponding to ·3.6 105 A/m
which is about 75%of the value for bulkmagnetite.

The sample for PS-SANS experiments consisted of core–shell particles suspended inD2O at an Fe
concentration of 10 mg/mL corresponding to a volume fraction of 0.0019. For the experiment, approximately
0.8mL of samplewas filled in a standard 2mm-path length titanium cell with quartz windows.

A sample of dry iron oxide cores was produced fromoleic acid covered iron oxide cores suspended inH2O
by dripping it onto aluminum foil and allowing the solvent to evaporate. The drying resulted in a sticky powder
thatwas kept in the aluminum foil and used for polarization analysed SANSmeasurements (PASANS).

3.1. Polarization analysed SANS characterization of reference
To characterize themagnetic core to be used as reference in PS-SANS, a PASANS experiment was performed on
the sample of dried iron oxide cores. Themeasurements were performed at theNG7-SANS instrument atNIST
Center forNeutronResearch (NCNR) using a polarized neutron beam and a polarized 3He analyzer. The sample
was placed in zero applied field, except for the small guidefield (≈2mT)necessary tomaintain the neutron
polarization.

With PASANS it is possible to separate themagnetic from the nuclear scattering, allowing us to characterize
themagnetic scattering of the particles. Themagnetic and nuclear SANS data is shown infigure 4. The nuclear
signal is determined from the non-spin-flip scattering parallel to the appliedfield and themagnetic signal is

7
The identification of any commercial product or trade name does not imply endorsement or recommendation by theNational Institute of

Standards andTechnology.
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determined from the spin-flip scattering perpendicular to the applied field and comes from themagnetization
perpendicular to the applied (guide)field. Formore information about PASANS see [16–19].

Ourmain objective here is to characterize themagnetic scattering of the cores. The structure of the
individual particles can be extracted from the higher-Q part of the scatteringwhile the scattering at lowQ reflects
the packing of the powder. To take the packing of the particles into account both the nuclear andmagnetic signal
wasfitted to a face-centered-cubic (FCC) paracrystalmodel [20, 21]using the Sasview software [22]. The
scattering at low-Q could not be captured satisfactorily with the FCCmodel, which indicates that the packing of
the particles is not perfectly described by the FCC structure. To obtain the optimal fit of the high-Q region only
theQ>0.025Å−1 region of themagnetic signal was included in the fit. For the nuclear signal datawith
Q>0.01Å−1 was included in thefit. In both cases themodel represents the data well in the fittedQ-range and
captures the important features, such as the high-Q oscillations from the particle dimensions and the correlation
peak atQ≈0.023Å−1 in the nuclear scattering.

Figure 4.PASANS data fromdried particle cores. The nuclear signal is determined from the non-spin-flip scatteringwheras the
magnetic signal is determined from the spin-flip scattering and corresponds to themagnetization perpendicular to the guide field. The
full lines arefits to an FCCparacrystalmodel. The error bars represent one standard deviation.

Figure 3.Transmission electronmicroscopy image of iron oxide particle cores. The scale bar is 25 nm.

7
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The nuclear andmagnetic particle sizes determined from the fits are given in table 1. The nuclear radius of
12.50 (2)nmcorresponds exactly to the nominal 25 nmparticle diameter and the 4.6 (2)%polydispersity
confirms the narrow size distribution. Themagnetic size comes out smaller than the particle size with a radius of
11.8 (2)nmconsistent with a 0.7 nm surface layer that is eithermagnetically disordered or has a different order
than the bulk of the particles.Magnetic disorder near the surface ofmagnetic nanoparticles has been proposed
bymany authors as explanation of the reducedmagnetization ofmagnetic nanoparticles compared to bulk
materials [23, 24], although direct experimental observations of the disordered layer aremore scarce. At 13.8%
the polydispersity of themagnetic size is significantly larger than the narrow size distribution of the particles.

There is some variation in the results obtained from analysis of the PASANS data, depending on how the
parameters are constrained, e.g., whether or not the FCCpacking is required to be the same in the nuclear and
magnetic data. From these variations, we can deduce that the radius of the core is in the range 118–121Åwith a
polydispersity in the range 0.12–0.15. The values given in table 1 are the ones giving the bestfit.

4. PS-SANS experiment

The PS-SANS experiment was performed at theNG7-SANS instrument atNCNRusing 5.5Åneutronswith a
wavelength spread of 11.5% (FWHM) and two different sample-detector distances of 4.547 mand 12.547 m,
resulting in aQ-range from0.008Å−1 to 0.077Å−1. The initial spin state was prepared as or by a polarizing
FeSi double-V supermirror and an electromagnetic spin-flipper. The sample was placed at room temperature in
an electromagnet producing a 100mTmagnetic field along the (horizontal) x-directionwhich is enough to
saturate themagnetization of themagnetically ordered core. Scattering of  and neutronsweremeasured at
each detector distance for one hour resulting in a total of 4 h ofmeasurement time. The experimental setup is
shown schematically infigure 5.

The nuclear-magnetic cross termU(Q) is obtained from the difference between scattering of  and 
neutrons in the y-direction, i.e.

= - ( ) ( )U Q I I2 . 25y y

Iy and
Iy are determined fromarea-normalized sector slices with opening angles 15 with respect to the

vertical direction.
Incoherent scattering and any nuclear scattering that is uncorrelated to themagnetism, e.g. solvent

scattering or scattering from excess polymer in the suspension, will scatter evenly in the  and  channels andwill
thus automatically be subtractedwhenU(Q) is calculated. Consequently, the only data reduction that was done
consisted ofmasking out corrupted pixels near the edge of the detector, removing contaminated data points very
close to the beam stop, normalizing the intensities to the individual detector efficiencies, and scaling the data to
the sample transmission to obtain the intensity on an absolute scale. The data reductionwas done using the Igor
Promacros developed atNCNR [25]. The reduction software automatically computes the instrumental
resolution in eachmeasuredQ-point to be used for resolution smearing.

Table 1. Structural- andmagnetic particle sizes from
FCCparacrystal fits to PASANS data. The given
uncertainties represent one standard deviation.

Radius (nm) Polydispersity (%)

Nuclear 12.50 (2) 4.6 (2)
Magnetic 11.8 (2) 13.8 (12)

Figure 5.Experimental setup for polarized SANS. The neutrons are selected by the double-V supermirror cavity and the polarization
is either left unchanged or rotated by ◦180 (flipped)depending onwhether the neutron spinflipper is off or on. A guide field covers the
entire path frompolarizer to sample andmaintains the neutron polarization. The polarization of the scattered neutrons is not
analyzed.
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Themeasured polarized SANSdata is displayed infigure 6. The top panel shows themeasured cross sections
for  and neutrons in the y-direction and the bottompanel shows themeasured cross termU(Q).

5. Inversion of experimental data

5.1.Optimal resolution
The optimal spatial resolution, i.e., the smallest possible feature that can be distinguished in a diffraction
experiment, is limited by the largest scattering vectorQmax at which scattering ismeasured.When the phase is
known the relationship betweenQmax and thefinest lengthscale l that can be resolved is l≈π/Qmax and the
resolution is thus twice as good as in a conventional diffraction experiment where l≈2π/Qmax [7].With

= -ÅQ 0.077max
1we should expect an ideal resolution of l≈4.1nm in our experiment.

5.2. Finite element decomposition
To invert the experimental data we have to select the elements withwhich to describe the sample structure, i.e.,
define the radii of the core and shells in the FED. An obvious choicewould beR1=12.5 nm so the core in the

Figure 6.Polarized SANS data on core–shell nanoparticles inD2O. Top panel:measured intensities in the y-direction for the two spin
states (note the logarithmic scale). The experimental uncertainty (standard deviation) is smaller than the size of the points. Bottom
panel:measured cross term. The error bars represent one standard deviation.
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FED corresponds to the known size of the particle cores. The thicknesses and number of shells in the FED should
be chosen so that they correspond to the assumed sample dimensions (shell thickness of a few nanometers) and
to the information content in the collected data.

To carrymeaningful information the elements of the FED should not befiner than =l 4.1 nm. For the core
radius this requirement is R l2 1 which is wellmet whenR1=12.5 nm, and for the shells the requirement is
similarly that t l2 j , where tj is the thickness of the j’th shell. Note that the requirement is that the diameter, not
the radius, of the feature to be resolved is larger than l. Consequently the shells in our FED should be no thinner
than approximately 2 nm.

If perfect data was collected for 0<Q<Qmax and the total sample diameter was L, then themaximal
number of free parameters in amodel independent inversion could be quantified by theNyqist number which
can be determined as the integer part ofQmax L/π. However, because the data is not perfect the actual number of
permissible free parameters in amodel independent inversion could be smaller. For a given data set a suitable
FED can be determined by trial and error. A poor choice of FEDwill be reflected in artifacts like unrealistic
absolute values of the inverted SLDs or unphysical oscillations in the SLDprofile.

5.3. Inverted SLD
The inversionwas performed using a radius of 11.8 nmwith 12.6%polydispersity for the reference. The reason
for using a polydispersity of 12.6% and not 13.8%was that it slightly improved the stability of the inversion
results. The used polydispersity is within one standard deviation of the result obtainedwith PASANS (see
table 1). A (magnetic) SLDof r = -·1.46 10M

6 Å−2, corresponding to amagnetization of ·5.12 105 A/M
was used.

Examples of inverted SLDprofiles are shown infigure 7. The inverted SLDs are given relative to theD2O
solvent.While the relative SLD expected for the iron oxide core is -·0.59 10 6 Å−2, the polymer SLD is
unknown. Typical SLDs for hydrogenated polymers are close to the SLDofH2Oor slightly higher (up to
» -·1.5 10 6 Å−2)while deuterated polymers have SLDs close to that of D2O [26, 27]. Depending on the degree of
hydrogen-deuterium substitution in the solvent and on swelling of solventmolecules into the shell we can expect
the SLDof the shell to be somewhere in between these values, i.e. between- -·6.94 10 6 Å−2 and 0 relative to
D2O. The relevant SLDs are listed in table 2.

To resolve the structure of the polymer shell the inner shells are chosen to be thinnest and the outer shells
thickest. The four inverted SLDprofiles infigure 7 represent different FEDs, with inner shell thicknesses (or
binnings) of 2 nm, 3 nm, 4 nmand 5 nm. The outer radii of each shell in the FEDs offigure 7 are shown in
table 3. In all cases it was necessary to have the sample volume (the FED) extend to approximately 60 nm to
obtain a reasonable inversion. For all four binning choices the SLDof the iron oxide core is reproduced
reasonably well with an average core SLDof 0.67 (4) -·10 6 Å−2, where the uncertainty is the deviation of the
values determinedwith the four different binnings. In the first shell the SLD falls to≈−3 -·10 6 Å−2 in all cases,
indicating the change in the SLD from iron oxide to polymer. The SLD then increases first rather abruptly and
thenmore gradually as it approaches the point of zero contrast (solvent).

To verify that the inverted SLDs are in fact a solution to equation (23),U(Q)was calculated from the inverted
SLDs andwith the corresponding FED. This is shown infigure 8 for the inversionwith 2 nmbinning. The
invertedU(Q) agrees well with the experimental, indicating a good solution. The results for the other binning
choices are virtually indistinguishable.

Figure 7. Inverted scattering length density profiles for different binnings. The SLDs are given relative to theD2O solvent. The dashed
line at a SLDof 0.59 -·10 6 Å−2 represents the expected SLD for bulk Fe3O4, the line at zero represents the solvent, and the line at
- -·3 10 6 Å−2 is a guide for evaluating the SLDof the polymer shell. The outer radius of each shell is given in table 3.
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Apart from relatively small differences in the exact size of the SLD the results obtainedwith the different
binnings agree quite well. This shows that the results are robust with respect to changes in FED as long as a
reasonable number of parameters is chosen. In our case it turned out that themaximumnumber of parameters
in the FEDwas somewhere between 9 and 11 (8–10 shells). Ifmore shells were used artificial oscillations
appeared in the SLDprofiles. A binning size of only 1 nmwas also tried andwhile the results to some extent agree
with the SLDprofiles infigure 7, the results were very susceptible to small changes in the binning choices and the
results were considered unreliable.

An SVD tolerance of tol=104was chosen for the inversions presented here. Inmost cases tol=104 and
tol=0 gave the same results. In the latter case the precision of the SVD inversion is determined by themachine

Figure 8.Comparison of themeasured cross termU(Q)with the cross term calculated from equation (23) using the SLDs from the
inversionwith 2 nmbin size (and the corresponding radii from table 3). The data have beenmultiplied byQ2 to accentuate features at
higherQ. The error bars represent one standard deviation.

Table 2.Expected SLDs for the sample constituents. The
SLD for iron oxide (Fe3O4) is estimated assuming a
density of 5.2 gcm−1. The SLDof the polymer is expected
to be between that ofH2O andD2O.

ρ (10−6Å−2) r r- -(10D O
6

2
Å−2)

D2O 6.38 0

H2O −0.56 −6.94

Fe3O4 6.97 0.59

Polymer −0.56 to 6.98 −6.94 to 0

Table 3. Finite element decompositions (shell binnings) corresponding to
the inverted SLDs infigure 7.

2 nmbins 3 nmbins 4 nmbins 5 nmbins

R1 (nm) 12.5 12.5 12.5 12.5

R2 (nm) 14.5 15.5 16.5 17.5

R3 (nm) 16.5 18.5 20.5 22.5

R4 (nm) 18.5 21.5 24.5 27.5

R5 (nm) 22.5 24.5 30.0 32.5

R6 (nm) 30.0 30.0 40.0 40.0

R7 (nm) 40.0 40.0 50.0 50.0

R8 (nm) 50.0 50.0 60.0 60.0

R9 (nm) 60.0 60.0

11

J. Phys. Commun. 2 (2018) 095018 EBrok et al



epsilon (roundoff-error). The only exceptionwas the inversionwith a 2 nmbinning, where tol=0 lead to
oscillations in the inverted SLDprofile.We also performed the inversion usingQRdecompositionwhich gave
results identical or very similar to those obtained using SVD.

5.4. Sensitivity to changes inmagnetic structure
PS-SANS is highly sensitive to subtlemagnetic changes, such as from sample aging. As illustration, we show the
comparativemeasurements fromour nanoparticles solvated inD2O shortly after their synthesis and 40 days
later. Except for a global reduction in intensity of 33%, the predominantly structural scattering obtained from
unpolarized SANS looks indistinguishable in shape (figure 9(a)). Thismeans that apart from the probable
precipitation of some particles from solution, the structuralmorphology and particle-to-particle distribution/
agglomeration remains unaltered.

The nuclear-magnetic cross-term, however, shows pronounced differences (figure 9(b)). A uniform
reduction inmagnetic SLD across themagnetic cores would lead to a simple scaling reduction between the fresh
and aged particles, which is not supported by experimental data inwhich the scattering difference ismost
pronounced at low-Q. Instead, the change can be qualitativelymodeled by a reduction inmagnetic core size,
which could occur if aging reduces themagnetization per volume primarily at the Fe3O4 surface of the
nanoparticles.

A simulation of single-particle, 12.5 nmFe3O4 cores with a 4.0 nm thick polymer shell residing inD2Owith
either 12.0 nmor 11.3 nmmagnetic cores is shown infigure 9(c). TheD2O and Fe3O4 SLDs are set equal to bulk
material values, while the polymer shell set -·1.35 10 6 Å−2. As evidenced by the dotted vertical line at 0.006Å−1

infigures 9(b)–(c), this reduction inmagnetic core size can explain the low-Q divergence in scattering profiles
between the fresh and aged samples, whilemaintaining close agreement in scattering profiles at higherQ. It is
also apparent that the samples in both cases are not single-particle since the low-Q turnover from single-particle
simulation is lacking in the data.

The point here is not to rigorouslyfit the aged data, but rather to demonstrate that PS-SANS can be used to
detectmagnetic differences between samples whichwould be challenging to detect with conventional SANS.

6.Discussion

Inversion of the PS-SANS data results in an SLDprofile that correspondswell to that expected for the core–shell
nanoparticles. The inverted core SLDof 0.67 (4) -·10 6 Å−2 is 12% larger than expected for iron oxide.
Furthermore, amagnetic SLDof -·1.46 10 6 Å−2 corresponding to the saturationmagnetization of bulk Fe3O4

was used in the inversion and not the lowermagnetization expected for the nanoparticles. The expected
magnetic SLD is thus 75%of the value used in the inversion, and accordingly the inverted SLDs should be
rescaled by a factor of 1.33 giving a larger deviation from the expected SLDof iron oxide (almost 50%). This
relatively large discrepancy can be explained by inaccuracies in the particle concentration (f), or in the
determined size or polydispersity of the reference. Considering that ourmethod ismodel free and employs no
scalingwe consider it a success that we reproduce the iron oxide SLD so closely.

The SLDprofile drops to a contrast of about- -·3 10 6 Å−2 and tapers off towards zero consistent with a
well defined polymer shell extending approximately 4 nm from the core and amore loosely associated structure
extending to about 40 nm (27.5 nm from the core). The inversionwas only successful when the SLDprofile was
extended to about 60 nmor longer, indicating structural correlations significantly longer than the expected shell
thickness.

The change in the nuclear-magnetic cross term for the samples aged for 40 days shows that the technique is
very sensitive to changes in themagnetic structure of the reference. This shows thatmeasuring themagnetic
cross term can be used to studymagnetic details that does not produce any significant change in the unpolarized
scattering pattern. Furthermore, it shows that having awell characterized reference is of crucial importance for
the PS-SANSmethod towork.

To test the limits of themethod, inversion of simulated scattering datawas also performed. The datawas
simulatedwith realistic experimental conditions (Q-range, resolution smearing, statistical noise) andwith
sample parameters that resemble the expected structure of the core–shell nanoparticles used in the experiment.
The results of the simulations are summarized in appendix. The inverted simulated data demonstrates that an
SLDprofile almost perfectlymatching the input values is obtained if the chosen FED corresponds to the sample
structure and that even if this is not the case, i.e., if the sample SLD varies within one FED element, the overall
structural features are still correctly reproduced (see figure A2 top).

In recent conventional SANS studies of samples similar to the ones studied here [28] it was found that the
core–shell particles tended to form two-particle aggregates (dimers). Therefore scattering fromdimers was
simulated in the sameway as the isolated particles. Inversion of the simulated dimer scattering produced
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Figure 9. (a)Predominantly structural scattering fromunpolarized SANS and (b)nuclear-magnetic cross-term taken frompolarized
scattering perpendicular to the appliedmagnetic field, where the scattering of the aged sample has been uniformlymultiplied by a
factor of 1.3. The inset in (a) emphasizes the close agreement in the predominantly structural scattering, where the oscillation in data
points arises from anoverlap in detector distances. (c) Simulation of single nanoparticles differing only inmagnetic core size (but not
structural core size). The dotted vertical line in (b, c) shows the lowestQ point common to both data sets for ease of comparison
between experimental and simulated data splitting.
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unreasonable results unless the inverted spatial rangewas extended to approximately 60 nm, exactly as for the
experimental data. This is a strong indication that dimer formation is happening in the sample and that the
correlation from the reference to the structure of the neighboring particle is responsible for the slow decrease in
SLD contrast frompolymer to solvent in the≈20–40 nm range. This illustrates that themethod is sensitive to
evenweak correlations and highlights the need for good samples withminimal interparticle interactions.

Inversion of experimental datawas performed successfully with four different choices of FED, giving overall
consistent SLDprofiles for all choices. This shows that the exact details of the FED is not so important, as long as
the FED iswithin the limits of the experimentalQ-range and not too coarse to represent the sample structure.
The fact that the inversionworkswith the 2 nmbin size shows that we do obtain a resolution that is better than
what could be obtained by conventional SANS by a factor of two.

Nanoscale core–shell particles with amagnetic core and a nonmagnetic shell are relevant for applications in
electronics and biomedicine, such as permanentmagnets,magnetic hyperthermia and thermally assisted drug
delivery. Although the internal structure of such systems is important for their intended function it is difficult to
determine the internal structure with conventionalmethods [29–33]. Our study shows that it is possible to
successfully obtain phase sensitive information about the structure of a core–shell system consisting of a
magnetic nanoparticle with polymer coating.

Themost important difference between PS-SANS and conventional SANS techniques is that; (i)
Conventional unpolarized SANS can give information about the orientationally averaged,model dependent
shape (e.g., radius of gyration) and chemical composition of amacromolecular object of interest (ii)Polarized
SANS can additionally give this information about ferromagnetic components. (iii)PS-SANS can give
information aboutmodel independent shape and composition of amacromolecular object of interestwithout
orientationally averaging via the use of a known attached reference structure. Orientationally averaging is of
course only relevant for samples without spherical symmetry, andwhile core–shell structures are of considerable
interest, ourmethod can only be considered amodest success until it is used to determine the three dimensional
structure ofmacromolecules in solution. This could potentially be of great importance, especially for proteins
that cannot be crystallized and for determining differences between crystallized and in-solution structures, but
this cannot be realized using a single spherical reference particle attached to the sample.

To obtain a full three dimensional structure of amolecule one could either use asymmetric reference
particles or attachmultiple references to themolecule. The references have to be rigidly attachedwith (nearly)
identical position and orientationwith respect to the sample structure and it is thus not a simplematter to
realize. Therefore the next step could be to use, e.g., rod-shapes particles that do not have spherical symmetry or
to tag amolecule withmultiple spherical references at known sites.

Finally, we shouldmention that phase sensitive SANS can be achievedwithout the combination ofmagnetic
nanoparticles and polarized neutrons. For example, instead of effectively changing themagnetic SLD of the
reference by changing the neutron polarization, one could conceivably use a non-magnetic reference, such as a
verywell determinedmolecule. If scattering of the compound sample-reference could bemeasured, as well as
the scattering of the sample on its own and of the reference on its own, the sample structure factor amplitude and
phase could be retrieved.However, such an experiment would have the disadvantage that the samplemay be
changed betweenmeasurements with andwithout reference.

7. Conclusions

Wehave successfully performed thefirst experimental realization of the particular phase-sensitive small-angle
neutron scatteringmethod originally described theoretically in [8] using, for this specific test case, amagnetic
reference particle in conjunctionwith polarized beams.Our results demonstrate the feasibility of themethod by
recovering the structure of an iron-oxide-core polymer-shell particle.We demonstrate that themethod is robust
and gives structural informationwith a resolution that is better than expected from a conventional SANS
experiment. Our experiments also demonstrate the sensitivity of themethod and the importance of the
preparation of high quality samples. Ourmethod is directly applicable tomagnetic core–shell nanoparticle
systems and could be extended to three dimensional structure determination ofmacromolecules in solution by
using anisotropic reference particles.
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Appendix. Inversion of simulated scattering data

To test the validity of the results of inverting the experimental data and to study the effect of the choice of FED
inversions were also performed on simulated scattering data from a core–shell structure. The simulationswere
performed using the experimentalQ-range and resolution smearing as well as statistical noise. The sample
parameters for the simulationswere chosen to be comparable to those expected for the samplewith a volume
fraction off=0.002, core radius of 12.5 nm, shell thickness of 5 nm, and SLDs of -·0.56 10 6 Å−2 and
- -·3.0 10 6 Å−2 relative to the solvent, for the core and shell respectively. The reference was given a radius of
12 nmwith 10%polydispersity and amagnetic SLDof 1.46 -·10 6 Å−2.

Conventional SANS investigations of samples similar to the ones studied here indicate that the particlesmay
form two-particle aggregates (dimers) in the suspension [28]. To see how this would effect the inversion
experiment we simulated both scattering of isolated core–shell particles and dimers of core–shell particles. In the
simulations of the dimers the separation between the two particles was equal to one core–shell radius at 35 nm,
i.e., the two particles are touching. Orientational averagingwas performed for a randomaverage orientation of
the dimers.

The simulated difference functionU(Q) is plotted infigure A1 for both the single particles and the dimers
alongwith the experimental data for comparison. Interestingly, the shape of theU(Q) experimental curve seems
to be better represented by the dimer simulation than by the single particle simulation, indicating that dimer
formationmight indeed be happening and that it changesU(Q) significantly.

The SLDswere obtained from the simulatedU(Q) using equation (23). For the simulated single particle
model the inversionwas not very sensitive to the choice of binning and a core–shell structure with dimensions
and SLDs close to the input parameters was always recovered. Infigure A2 (top) the inverted SLDprofile for the
single particle is shown for three different FEDs. The one labeled ‘commensurate’ has a FEDwith only three
elements that exactly correspond to the simulated structure, i.e.,R1=12.5 nm,R2=17.5 nm, and
R3=25 nm,where the truncation of the last shell corresponding to the solvent is arbitrary. The FED labeled
‘incommensurate’ has one element corresponding to the core, one entirely inside the shell, one that is partly in

Figure A1. Simulated cross termU(Q)multiplied byQ2 for single particles and dimers. The experimental data is displayed for
comparison.
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Figure A3.Dimer inversions. From the point of view of the reference, whichwe imagine as centered in one of the particles in the dimer
the SLD in the FED components will be volume averages of solvent SLD and the SLDof the neighboring particle

Figure A2. SLDprofiles inverted from simulated scattering data for single particles (top) and dimers (bottom). The horizontal dashed
lines represent the input SLDs of the core (0.56 -·10 6 Å−2), shell (−3.0 -·10 6 Å−2), and solvent (0).
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the shell and partly in the solvent aswell as one entirely in the solvent. Inversionwith the commensurate FED
exactly reproduces the input SLD. The incommensurate FED results in an SLDof- -·3.2 10 6 Å−2 for the part
that corresponds to the shell (input SLD of- -·3.0 10 6 Å−2) and- -·1.29 10 6 Å−2 for the part corresponds
partly to shell and partly to solvent, where the expected SLDwould be- -·1.21 10 6 Å−2 (calculated from the
volume fraction inside and outside the shell). The inversion labeled ‘fine’ in thefigure has an FEDwith 1 nm thin
elements in the shell region and represents the input SLDs extremely well.

When the simulated dimer scatteringwas inverted using the same FEDs as for the isolated particles the
resulting SLDs differed from the input values bymore than an order ofmagnitude. To get the inversion to
produce reasonable SLD values the FEDs had to be extended to a radius of approximately 60 nm, exactly aswas
the case for inversion of the experimental data. The SLDprofile from inversion of the simulated dimer scattering
(lower panel offigure A2) resembles that of the sample (figure 7) indicating that the nonzero SLDbeyond the
immediate shell can likely be attributed to correlation to neighboring particles. The sketch infigure A3 illustrates
that the SLDdistribution of a dimer as seen fromone of the particles as reference resembles the results fromour
inverted experimental data.

ORCID iDs

Erik Brok https://orcid.org/0000-0003-4377-8747

References

[1] HauptmanH andKarle J 1953 Solution of the Phase Problem I. The Centrosymmetric Crystal ACAMonographNo. 3 (NewYork:
AmericanCrystallographic Assiciation)

[2] HauptmanH1986 Science 233 178–83
[3] TaylorG 2003Acta Crystallographica—sectionDBiological Crystallography 59 1881–90
[4] MajkrzakC F andBerkNF 1995Phys. Rev.B 52 827–30
[5] deHannVOand vanWell AA 1995Phys. Rev.B 52 831–3
[6] MajkrzakC, BerkN, Krueger S, Dura J, TarekM, TobiasD, Silin V,Meuse C,Woodward J and Plant A 2000Biophys. J. 79 3330–40
[7] MajkrzakC F, BerkNF and Perez-Salas U F 2003 Langmuir 19 7796–810
[8] MajkrzakC F, KryckaK, Krueger S, BerkNF, Kienzle P andMaranville B 2014 J. Appl. Crystallogr. 47 780–7
[9] WiedenmannA 2000 J. Appl. Crystallogr. 33 428–32
[10] Pedersen J S, Posselt D andMortensenK1990 J. Appl. Cryst. 23 321–33
[11] Barker J G and Pedersen J S 1995 J. Appl. Crystallogr. 28 105–14
[12] Grillo I 2001 Effect of instrumental resolution and polydispersity on ideal form factor in small angle neutron scattering ILL Technical

Report ILL01GRT08TTech. Rep. Institut Laue Langevin
[13] DeHaro L P et al 2015Biomedical Engineering/Biomedizinische Technik 60 445–55
[14] Vreeland EC et al 2015Chem.Mater. 27 6059–66
[15] Tay ZW,HensleyDW,Vreeland EC, Zheng B andConolly SM2017Biomed. Phys. Eng. Express 3 035003
[16] KryckaK, ChenW, Borchers J,Maranville B andWatson S 2012 J. Appl. Crystallogr. 45 546–53
[17] KryckaK, Borchers J, Ijiri Y, BoothR andMajetich S 2012 J. Appl. Crystallogr. 45 554–65
[18] WiedenmannA 2005Physica B: CondensedMatter 356 246–53
[19] HoneckerD, FerdinandA,Döbrich F,Dewhurst CD,WiedenmannA,Gómez-Polo C, Suzuki K andMichels A 2010 Eur. Phys. J.B 76

209–13
[20] MatsuokaH, TanakaH, IzukaN,Hashimoto T and IseN 1987Phys. Rev.B 36 1754–65
[21] MatsuokaH, TanakaH, IzukaN,Hashimoto T and IseN 1990Phys. Rev.B 41 3854–6
[22] Sasview 2016 Sasviewwebsite http://sasview.org
[23] Dutta P, Pal S, SeehraMS, ShahN andHuffmanGP 2009 J. Appl. Phys. 105 07B501
[24] Curiale J, GranadaM,TroianiHE, Sánchez RD, Leyva AG, Levy P and SamwerK 2009Appl. Phys. Lett. 95 043106
[25] Kline SR 2006 J. Appl. Crystallogr. 39 895–900
[26] Mark J E (ed) 2007Physical Properties of Polymers Handbook 2nd edn (NewYork: Springer Science&BusinessMedia)
[27] EndoH,MayumiK,OsakaN, Ito K and ShibayamaM2011Polymer Journal 43 155–63
[28] Brok E, KryckaK L, Borchers J A, Dennis C, Theis-Bröhl K,HuberD andVreeland E 2016Unpublished
[29] Lee JH, Jang J T, Choi J S,Moon SH,Noh SH,Kim JW,Kim JG,Kim I S, Park K I andCheon J 2011Nat. Nanotechnol. 6 418–22
[30] López-Ortega A et al 2012Nanoscale 4 5138–47
[31] Zhang J L, Srivastava R S andMisra RDK2007 Langmuir 23 6342–51
[32] KryckaKL, Borchers J A, LaverM, Salazar-Alvarez G, Lopez-Ortega A, EstraderM, Surinach S, BaroßMD, Sort J andNogues J 2013

J. Appl. Phys. 113 17B531
[33] KryckaKL et al 2013ACSNano 7 921–31

17

J. Phys. Commun. 2 (2018) 095018 EBrok et al

https://orcid.org/0000-0003-4377-8747
https://orcid.org/0000-0003-4377-8747
https://orcid.org/0000-0003-4377-8747
https://orcid.org/0000-0003-4377-8747
https://doi.org/10.1126/science.233.4760.178
https://doi.org/10.1126/science.233.4760.178
https://doi.org/10.1126/science.233.4760.178
https://doi.org/10.1107/S0907444903017815
https://doi.org/10.1107/S0907444903017815
https://doi.org/10.1107/S0907444903017815
https://doi.org/10.1103/PhysRevB.52.10827
https://doi.org/10.1103/PhysRevB.52.10827
https://doi.org/10.1103/PhysRevB.52.10827
https://doi.org/10.1016/S0006-3495(00)76564-7
https://doi.org/10.1016/S0006-3495(00)76564-7
https://doi.org/10.1016/S0006-3495(00)76564-7
https://doi.org/10.1021/la0341254
https://doi.org/10.1021/la0341254
https://doi.org/10.1021/la0341254
https://doi.org/10.1107/S1600576714004956
https://doi.org/10.1107/S1600576714004956
https://doi.org/10.1107/S1600576714004956
https://doi.org/10.1107/S0021889899015381
https://doi.org/10.1107/S0021889899015381
https://doi.org/10.1107/S0021889899015381
https://doi.org/10.1107/S0021889890003946
https://doi.org/10.1107/S0021889890003946
https://doi.org/10.1107/S0021889890003946
https://doi.org/10.1107/S0021889894010095
https://doi.org/10.1107/S0021889894010095
https://doi.org/10.1107/S0021889894010095
https://doi.org/10.1021/acs.chemmater.5b02510
https://doi.org/10.1021/acs.chemmater.5b02510
https://doi.org/10.1021/acs.chemmater.5b02510
https://doi.org/10.1088/2057-1976/aa6ab6
https://doi.org/10.1107/S0021889812003445
https://doi.org/10.1107/S0021889812003445
https://doi.org/10.1107/S0021889812003445
https://doi.org/10.1107/S0021889812010114
https://doi.org/10.1107/S0021889812010114
https://doi.org/10.1107/S0021889812010114
https://doi.org/10.1016/j.physb.2004.10.085
https://doi.org/10.1016/j.physb.2004.10.085
https://doi.org/10.1016/j.physb.2004.10.085
https://doi.org/10.1140/epjb/e2010-00191-5
https://doi.org/10.1140/epjb/e2010-00191-5
https://doi.org/10.1140/epjb/e2010-00191-5
https://doi.org/10.1140/epjb/e2010-00191-5
https://doi.org/10.1103/PhysRevB.36.1754
https://doi.org/10.1103/PhysRevB.36.1754
https://doi.org/10.1103/PhysRevB.36.1754
https://doi.org/10.1103/PhysRevB.41.3854
https://doi.org/10.1103/PhysRevB.41.3854
https://doi.org/10.1103/PhysRevB.41.3854
https://doi.org/10.1063/1.3055272
https://doi.org/10.1063/1.3187538
https://doi.org/10.1107/S0021889806035059
https://doi.org/10.1107/S0021889806035059
https://doi.org/10.1107/S0021889806035059
https://doi.org/10.1038/pj.2010.124
https://doi.org/10.1038/pj.2010.124
https://doi.org/10.1038/pj.2010.124
https://doi.org/10.1038/nnano.2011.95
https://doi.org/10.1038/nnano.2011.95
https://doi.org/10.1038/nnano.2011.95
https://doi.org/10.1039/c2nr30986f
https://doi.org/10.1039/c2nr30986f
https://doi.org/10.1039/c2nr30986f
https://doi.org/10.1021/la0636199
https://doi.org/10.1021/la0636199
https://doi.org/10.1021/la0636199
https://doi.org/10.1063/1.4801423
https://doi.org/10.1021/nn303600e
https://doi.org/10.1021/nn303600e
https://doi.org/10.1021/nn303600e

	1. Introduction
	2. An initial application of the general method to a simpler spherically symmetric system
	2.1. Resolution smearing

	3. Sample characterization
	3.1. Polarization analysed SANS characterization of reference

	4. PS-SANS experiment
	5. Inversion of experimental data
	5.1. Optimal resolution
	5.2. Finite element decomposition
	5.3. Inverted SLD
	5.4. Sensitivity to changes in magnetic structure

	6. Discussion
	7. Conclusions
	Acknowledgments
	Appendix. Inversion of simulated scattering data
	References



